in parity-violating electron scattering

Peter Blunden

University of Manitoba

MENU 2010
June 2, 2010

Parity-violating electron scattering

right-left polarization asymmetry in $\vec{e}+p \rightarrow e+p$ scattering

$$
\begin{aligned}
& A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\frac{2 \Re\left\{\mathcal{M}_{\gamma}^{\dagger} \mathcal{M}_{Z}\right\}}{\left|\mathcal{M}_{\gamma}\right|^{2}} \\
& j_{\mu}^{Z}=\bar{u}\left(g_{V}^{e} \gamma_{\mu}+g_{A}^{e} \gamma_{\mu} \gamma_{5}\right) u \quad g_{V}^{e}=-\left(1-4 s_{W}^{2}\right)
\end{aligned}
$$

using relation between weak and EM form factors

Two-boson exchange corrections

Electromagnetic radiative corrections interfere with $M_{Z}\left(M_{\gamma} \rightarrow M_{\gamma}+M_{\gamma \gamma}\right)$
plus weak radiative corrections interfere with $M_{\gamma}\left(M_{z} \rightarrow M_{z}+M_{\gamma}\right)$
plus two-photon exchange " $\gamma(\gamma \gamma)$ " in denominator
Zhou, Kao \& Yang, PRL 2007; Tjon \& Melnitchouk, PRL 2008;
Tjon, Melnitchouk \& Blunden, PRC 2009

Tjon, Blunden \& Melnitchouk, PRC (2009)

Weak charge of the proton: $Q_{W}^{p}=1-4 \sin ^{2} \theta_{W} \approx 0.072$

$$
\begin{aligned}
\sin ^{2} \theta_{W}\left(M_{Z}^{2}\right) & =0.23113 \pm 0.00015 & \text { (PDG) } \\
\sin ^{2} \theta_{W}(0) & =0.23807 \pm 0.00017 & \text { (Erler et al., 2004) }
\end{aligned}
$$

Qweak: 4\% measurement of weak charge (2% expt + 2\% theory)
0.3% measurement of weak mixing angle

$$
A^{\mathrm{PV}} \equiv \frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \rightarrow \frac{G_{F}}{4 \pi \alpha \sqrt{2}} t Q_{W}^{p}
$$

Measure at forward angles where $t \rightarrow 0$

- At tree level proton's weak charge given by

$$
Q_{\mathrm{w}}^{p}=1-4 \sin ^{2} \theta_{W}
$$

- At higher orders Q_{w}^{p} receives corrections from electroweak quantum fluctuations
$Q_{W}^{p}=\left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right)$

$$
+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}(0)
$$

Allow for E-dependence

■ QED and short-distance corrections under control
\rightarrow most uncertain is γZ box contribution, sensitive to long-distance physics

- First estimates of γZ boxes by Marciano \& Sirlin (MS) in atomic parity violation (APV)
\rightarrow low-energy part approximated by Born contribution (elastic intermediate state)

\rightarrow high-energy part (above scale $\Lambda \sim 1 \mathrm{GeV}$) computed in terms of scattering from free quarks

Marciano, Sirlin, PRD 29, 75 (1984)

Two parity-violating contributions

$$
\square_{\gamma Z}(E)=\square_{\gamma Z}^{A}(E)+\square_{\gamma Z}^{V}(E)
$$

$V_{e} \times A_{h} \rightarrow$ computed by MS $\quad \square_{\gamma Z}^{A}(E)$

$$
\begin{array}{r}
\delta^{(\gamma Z)} Q_{\mathrm{w}}^{p}=\frac{5 \alpha}{2 \pi}\left(1-4 \sin ^{2} \theta_{W}\right)\left[\ln \frac{M_{Z}^{2}}{\Lambda^{2}}+C_{\gamma Z}(\Lambda)\right] \\
\text { high-energy }, \overbrace{\text { low-energy }}
\end{array}
$$

\rightarrow estimated uncertainty $\Delta Q_{\mathrm{w}}^{p}=0.65 \%$
Erler et al., PRD 68, 016006 (2003)
$A_{e} \times V_{h} \rightarrow$ small at low $E_{e} \quad \square_{\gamma Z}^{V}(E)$
\longrightarrow neglected in APV, but is it small at GeV energies?

- $A_{e} \times V_{h}$ term recently computed in forward limit within dispersion relation (DR) approach

Gorchtein, Horowitz, PRL 102, 091806 (2009)

forward limit

$$
\begin{aligned}
t & =\left(k-k^{\prime}\right)^{2} \rightarrow 0 \\
s & =(k+p)^{2} \\
& =M(M+2 E)
\end{aligned}
$$

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{1}{\pi} P \int_{-\infty}^{\infty} d E^{\prime} \frac{\Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)}{E^{\prime}-E}
$$

Negative energy corresponds to crossed box

By optical theorem

$$
2 \Im m \mathcal{M}_{f i}=\int d \rho \sum_{n} \mathcal{M}_{n f}^{*} \mathcal{M}_{n i} .
$$

- $A_{e} \times V_{h}$ term recently computed in forward limit within dispersion relation (DR) approach

Gorchtein, Horowitz, PRL 102, 091806 (2009)

$$
\begin{aligned}
& \text { forward limit } \\
& t=\left(k-k^{\prime}\right)^{2} \rightarrow 0 \\
& s=(k+p)^{2} \\
& =M(M+2 E) \\
& 2 \Im m \mathcal{M}_{\gamma Z}^{\mathrm{PV}}=4 \pi M \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 E_{k^{\prime}}}\left(\frac{4 \pi \alpha}{Q^{2}}\right)\left(\frac{-2 G_{F}}{\sqrt{2}}\right) \\
& \times \frac{1}{1+Q^{2} / M_{Z}^{2}} L_{\mu \nu}^{\gamma Z} W_{\gamma Z}^{\mu \nu} \\
& W_{\gamma Z}^{\mu \nu}=\frac{1}{4 \pi M} \int d^{4} x e^{i q \cdot x} \\
& \times\langle p|\left[J_{\gamma}^{\mu}(x) J_{Z}^{\nu}(0)+J_{Z}^{\mu}(x) J_{\gamma}^{\nu}(0)\right]|p\rangle \\
& =\frac{1}{M}\left[-F_{1}^{\gamma Z} g^{\mu \nu}+F_{2}^{\gamma Z} \frac{p^{\mu} p^{\nu}}{p \cdot q}\right]
\end{aligned}
$$

- $A_{e} \times V_{h}$ term recently computed in forward limit within dispersion relation (DR) approach

Gorchtein, Horowitz, PRL 102, 091806 (2009)

$$
\begin{aligned}
& k \rightarrow \gamma^{*}\left\{\begin{array}{l:l}
& \begin{cases} \\
& k^{\prime} \approx k \\
Z & \text { forward limit } \\
t=\left(k-k^{\prime}\right)^{2} \rightarrow 0\end{cases}
\end{array}\right. \\
& s=(k+p)^{2} \\
& =M(M+2 E) \\
& \Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
& \times\left[F_{1}^{\gamma Z}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\right]
\end{aligned}
$$

Resonance region ($\mathrm{W}<2.5 \mathrm{GeV}$)

- For isospin $3 / 2$ states, CVC and isospin symmetry imply

$$
F^{\gamma Z}=\left(1+Q_{W}^{p}\right) F^{\gamma}
$$

- For isospin I/2 states, transition couplings with few percent
- Use phenomenological input
- Take P33 (I232), DI3 (I520), FI5(I680), F37 (1950) plus background

Deep inelastic region

- Approximate interference structure functions

$$
F_{1,2}^{\gamma Z} \approx F_{1,2}^{\gamma} \equiv F_{1,2}
$$

\rightarrow good approximation at low x
\rightarrow provides upper limit at larger x

$$
\begin{aligned}
F_{2}^{\gamma Z} & =x \sum_{q} 2 e_{q} g_{V}^{q}(q+\bar{q}) \\
F_{2}^{\gamma} & =x \sum_{q} e_{q}^{2}(q+\bar{q})
\end{aligned}
$$

- F2 parametrization motivated by Regge theory; valid at both low and high Q^{2}
- Pomeron (related to sea quark), and Reggeon (related to valence quark) components

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right) & =A_{P} x^{-\Delta}(1-x)^{n+4}\left[\frac{Q^{2}}{Q^{2}+\Lambda_{P}^{2}}\right]^{1+\Delta} \\
& +A_{R} x^{1-\alpha_{R}}(1-x)^{n}\left[\frac{Q^{2}}{Q^{2}+\Lambda_{R}^{2}}\right]^{\alpha_{R}}
\end{aligned}
$$

Large W, low Q^{2}

Large W, large Q^{2}

Performing dispersion integral: real part of correction

[^0]
Summary

- Qweak correction large, but uncertainty under control
- Uncertainty in Qweak may be reduced further with measurements of $\gamma \mathrm{Z}$ interference structure functions in PVDIS
- 50\% larger than GH result
- Dispersion relations that use cross section data are useful at forward angles, however still need for models to extrapolate (not all data is available, e.g. γZ interference, axial part)

Collaborators: Sibirtsev, Melnitchouk, Thomas

[^0]: $0.0047_{-0.0004}^{+0.0011}$ or $6.6_{-0.5}^{+1.5} \%$

